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The year 2017 witnessed a landmark in adoptive T-cell ther-
apy (ACT) for the treatment of cancer, with the arrival of 
the first approved products. In August and October that 

year, the US Food and Drug Administration (FDA) approved tisa-
genlecleucel (Kymriah)1 and axicabtagene ciloleucel (Yescarta)2 
for treating certain B-cell leukaemias and lymphomas, respec-
tively. Both medicines are examples of chimeric antigen receptor 
(CAR) T-cell therapies targeting the CD19 antigen present on B 
cells. While these first two CAR T-cell therapies have continued to 
gain approvals for additional disease indications, age groups and 
regulatory jurisdictions, a large pipeline of additional T-cell thera-
pies is also advancing. Indeed, in July 2020, the third CAR T-cell 
therapy, brexucabtagene autoleucel (TECARTUS) was approved 
for Mantle Cell Lymphoma3. The pipeline also includes a vari-
ety of classes of therapeutic T  cells, including CAR T and T-cell 
receptor engineered-T-cell (TCR-T) therapies against numerous 
antigens, tumour infiltrating lymphocyte (TIL) therapies derived 
from a patient’s own surgically resected tumour tissue, and cyto-
toxic T lymphocytes (CTL) such as those targeting Epstein–Barr 
virus antigens for use in treating Epstein–Barr-virus-positive lym-
phomas4. Each class of T-cell therapy has its unique properties  
(Fig. 1 and Table 1) that make it more or less advantageous for use 
in specific diseases, patients and therapeutic settings. Of the four 
types of T-cell therapy, only CD19-directed CAR T cells have been 
approved for restricted types of B-cell-related haematological can-
cers1–3. However, it is widely anticipated that CAR T-cell therapies 
targeting B-cell maturation antigen will soon be approved for treat-
ing multiple myeloma5–7. Moreover, progress is also being made in 
solid tumour applications, where TIL therapies for cervical can-
cer8,9 and a TCR-T therapy for sarcoma10 have both commenced 
pivotal trials after showing promising data in initial studies. If 
these trials are successful, the TIL and TCR-T therapy classes may 
also have an approved treatment as an exemplar. Antiviral CTLs for 
virus-driven cancers are perhaps a little further behind in develop-
ment, but they have demonstrated clinical benefits in lymphoma4 
and nasopharyngeal carcinoma11,12. In general, T-cell-based cancer 
immunotherapies are emerging as powerful tools for cancer ther-
apy in the clinic13,14.

Despite these important advances, many hurdles remain to the 
wide implementation of ACT for cancer. Based on the results of 
approved and investigational T-cell therapy products, as well as 
findings in preclinical tumour models, the key challenges include: 
(1) failure of therapeutic T  cells to expand in  vivo to yield suf-
ficient numbers of effector cells due to insufficient stimulatory 
signals15; (2) inefficient trafficking of T  cells to the tumour site 
due to both physical barriers16,17 and immune-suppressive envi-
ronments18; (3) therapeutic T-cell exhaustion and death due to 
hostile tumour microenvironments19–22; and (4) loss of target 
antigen expression due to genetic mutations23–25. Of these chal-
lenges, the use of nanomaterials may be especially advantageous 
in addressing insufficient T-cell trafficking and overcoming the 
suppressive tumour microenvironment. In the following sec-
tions, we will briefly introduce the application of nanomaterials 
in cancer treatment, and then discuss specific examples of nano-
materials designed to improve T-cell expansion in vivo, overcome 
the physical barriers and immune-suppressive environment to 
enhance T-cell penetration of solid tumours, and re-direct T-cell 
function for cancer immunotherapy. We will also provide our 
future outlook on these emerging areas, including a discussion of 
potential applications at the interface of nanomaterials and in vivo  
T-cell immunotherapy.

Nanomaterials for T-cell cancer immunotherapy
Nanomaterials — materials with one or more external dimen-
sions in the range of 1–100 nm — have been intensively investi-
gated for cancer treatment in the past few decades26. For example, 
nanomaterials can enhance drug dispersion or stability, alter drug 
biodistribution, or improve drug accumulation in tumour sites, 
and some formulations have been approved for cancer treatment 
in the clinic27–29. These nanomaterials benefit from the enhanced 
permeability and retention effect, allowing them to passively tar-
get tumours30, and they have demonstrated improved outcomes 
in clinical trials31–33. For example, liposomal doxorubicin (Doxil 
and Myocet) was shown to improve pharmacokinetics and bio-
distribution and reduce cardiotoxicity compared with free drug34. 
Additionally, liposomal cytarabine–daunorubicin (also known as 
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CPX-351) — compared with the standard cytarabine and daunoru-
bicin treatment in patients with high-risk acute myeloid leukaemia 
— showed improved overall survival26. Moreover, nanomaterial 
albumin-bound paclitaxel (Abraxane) was shown to be superior to 
free paclitaxel in terms of response rate and disease progression for 
patients with breast cancer35. To further enhance therapeutic out-
comes, second-generation nanomaterials that build on the existing 
benefits of nanomaterials by adding new functions, such as active 
targeting36,37, stimuli-responsive drug release38,39 or the co-delivery 
of multiple drugs40,41, are currently in clinical trials or preclini-
cal studies for cancer therapy. Additional research is focused on 
nanomaterials that modulate the immune system as well as mate-
rials that can overcome physical barriers and immune-suppressive 
environments42–45. The development of these nanomaterial-based 
cancer therapies has greatly benefited from the modifiable features 
of nanomaterials, such as their variable surface characteristics 
(Fig. 2a)46,47, physicochemical properties (Fig. 2b)48–50 and control-
lable cargo encapsulation and release (Fig. 2c)51,52. Recently, these 
unique properties of nanomaterials have also been used to over-
come the challenges faced by T-cell therapies (Fig. 2d)44,53,54. For 
example, nanomaterials can be used for in  vivo T-cell engineer-
ing, targeted T-cell delivery55, stimuli-responsive drug release56 
and nanovaccine-boosted T-cell expansion strategies57. Moreover, 
nanomaterial-based bispecific T-cell engagers (NBiTEs; nanomate-
rials functionalized with antibodies that bridge T cells and tumour 
cells) have been used to redirect CTL functions for applications 
in T-cell immunotherapies58. In addition, nanomaterials can help 
T cells overcome physical barriers and immune-suppressive envi-
ronments to achieve solid tumour delivery. Specific investigations 
include tumour extracellular matrix (ECM)-targeting nanoma-
terials to enhance T-cell penetration59, nanomaterial-based scaf-
folds to locally deliver T cells to solid tumours60 and nanomaterial 
delivery systems to co-deliver biomolecules to circumvent the 
immune-suppressive environment61 in solid tumours. These recent 
studies successfully incorporating nanomaterials into T-cell-based 
cancer immunotherapies to enhance their efficacy illustrate the 
immense potential for nanomaterials to more broadly improve the 
clinical efficacy of T-cell therapies. We will discuss specific exam-
ples of nanomaterials designed to improve T-cell immunotherapy 
in the sections below.

Nanomaterials to enhance T-cell expansion in vivo
While ACT can be an effective cancer treatment, ex vivo manufac-
tured T cells may fail to persist or become exhausted after infusion62. 
To combat these limitations, this section will discuss the potential 
of nanomaterial fabrication to enhance in  vivo T-cell expansion 
through T-cell targeted delivery, backpacking nanomaterials and 
nanomaterial-based vaccines.

T-cell-targeted delivery to enhance expansion. In  vivo T-cell 
expansion can be achieved through T-cell-targeted nanomaterials 
(Fig. 3(i)) delivering genes, cytokines, antibodies and small mol-
ecules. To illustrate the efficacy of this approach, one study63 devel-
oped a polymeric nanomaterial to specifically co-deliver plasmids 
encoding a 194-1BBz CAR and a piggyBac transposase to T cells 
in  vivo, inducing CAR expression and expansion. This nanoma-
terial was designed to actively target CD3+ cells using anti-CD3e 
F(ab′)2 fragments conjugated to its surface. Further, to enhance 
gene transfer, nuclear localization and microtubule-associated 
sequences were co-loaded alongside the DNA cargo to promote 
nuclear entry. In combination, these design elements allowed for 
the efficient delivery of piggyBac transposase in vivo, resulting in 
CAR T-cell generation and expansion in a mouse model of leu-
kaemia63. This in vivo T-cell engineering approach to CAR T-cell 
production has the potential to become an alternative to current ex 
vivo procedures, as it may be more time- and cost-effective than 
current ex vivo practices. Though this polymeric nanomaterial was 
also found in approximately 5.9% of non-T blood cells after intra-
venous injection in mice63, which leads to concern over the risks 
of ‘off-target’ toxicity64, this study is a proof of concept that CAR 
T-cell therapy can be administered via traditional drug treatment 
methods. Nanomaterials are also relatively easier to scale up than 
traditional CAR T-cell therapy using living cells, and could be a 
transformative technology for in vivo CAR or TCR transgene deliv-
ery for broader implementation of cancer immunotherapy. This 
nanomaterial-based approach to deliver CARs in vivo is now mov-
ing into clinical testing (Table 2)63.

In addition to gene delivery, investigations have explored the 
use of cytokine delivery to modulate T-cell behaviour in  vivo, as 
these molecules are known to play an important role in T-cell 
activity65. Numerous cytokines have been tested in clinical trials as  
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Fig. 1 | Classes of T cells deployed in aCT. Adoptive T-cell therapy makes use of either naturally occurring or redirected T cells. The naturally occurring 
T cells include CTLs against viral antigens for virus-induced cancers, or TILs for solid tumours. The redirected T cells are generated by the addition of a 
gene encoding a tumour-antigen-specific TCR or CAR. The antigen specificity of TILs is often not characterized but, where delineated, typically consists of 
a mix of populations targeting tumour-associated antigens, which are upregulated self-antigens found at lower levels in healthy tissues, cancer germline 
antigens, which are normally only expressed in the gonads or during foetal development, and neoepitopes, which are cancer-specific mutations. While 
TIL therapy can achieve excellent clinical responses, the TILs must be isolated from surgically resected tumour biopsies, which is not feasible in many 
indications. When bulk T cells from the peripheral blood or cord blood, or derived from induced pluripotent stem cells are redirected by addition of a 
transgenic receptor, the endogenous TCR may be deleted using gene editing tools if doing so enhances the activity of the T-cell product or improves the 
safety profile. Therapeutic T cells encoding both a tumour-antigen-specific TCR and a CAR have been reported. VH, variable domain of heavy chain;  
VL, variable domain of light chain.
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anticancer agents, but they were largely unsuccessful — causing 
harsh side effects, offering narrow therapeutic windows and pro-
viding only modest benefits in select settings66. Despite these limi-
tations, in the 1990s, recombinant tumour necrosis factor (TNF; 
tasonermin)67 and interleukin-2 (IL-2; aldesleukin)68 were approved 
in certain countries for the treatment of unresectable soft tissue sar-
comas of the limbs or metastatic renal clear cell carcinoma and mel-
anoma, respectively67,69. For recombinant TNF-α, toxicity was such 
an issue that its use was restricted to isolated limb perfusion to mini-
mize systemic exposure67. With the advent of ACT, IL-2 was initially 
administered alongside these therapies in an attempt to improve 
the expansion and persistence of the infused T cells, but the com-
bination contributed to severe toxicity, including capillary leak syn-
drome70, leading investigators to pursue ACT approaches without 
the addition of cytokines71,72. Apart from IL-2 and TNF, a number of 
cytokines including IL-12, IL-7 and IL-15 were explored to enhance 
the efficacy of T-cell therapies73. However, despite the potential ben-
efits of cytokine treatments, they faced limitations due to systemic 
toxicity resulting from the non-specific uptake of free cytokines 
across cell types expressing the appropriate receptor74,75. To mitigate 
these negative effects, cytokine conjugation to poly(ethylene glycol) 
(PEG) was explored and has become a well-established strategy to 
prolong blood circulation and reduce toxicity, leading to several 
PEGylated cytokines approved for clinical use including interferon 
and granulocyte colony-stimulating factor76 as well as several oth-
ers currently in clinical trials77. Moreover, a number of alterna-
tive polymers have been used to increase the safety and efficacy 
of cytokines78, while nanomaterials have been explored as a means 
to target cytokine delivery to specific cell types55,79,80. Results from 
these investigations demonstrate that nanomaterial-based target-
ing of cytokines can enhance T-cell immunotherapies with limited 
toxicity. One study55, utilizing an IL-2–Fc fusion-protein-modified 
liposome nanomaterial in a mouse model of melanoma, found that 
intravenously injected liposomes were successfully delivered to the 
surface of over 95% of the adoptively transferred T cells, inducing 
enhanced T-cell proliferation in tumour-bearing mice. Further, 
repeated injections allowed for multi-wave in vivo proliferation of 
T cells with limited toxicity. These results demonstrate the potential 
for nanomaterials to enable cytokine-based strategies, but future 
studies must address the remaining challenges to cytokine treat-
ments. These include ways to enhance the targeting of desired cell 
types over the total population of cytokine receptor-expressing cells, 
the potential burst release of cytokines in the bloodstream, as well as 
the impact of nanomaterial biodegradability on clearance, delivery 
and toxicity.

In addition to cytokine delivery, nanomaterials-based delivery 
systems that target the exhaustion pathways81 have also been shown 
to enhance T-cell expansion in  vivo82–85. For example, one study 
designed a liposome modified with anti-CD90 antibodies to target 
T cells and deliver the transforming growth factor-β (TGF-β) inhib-
itor compound SB525334, resulting in notable inhibition of tumour 
growth compared with untargeted liposomes in a mouse model of 
melanoma82. Another study designed a poly(lactic-co-glycolic acid) 
(PLGA) and PEG (PLGA–PEG) nanomaterial modified with anti-
body for programmed cell death protein 1 (anti-PD-1) to target 
exhausted T cells83. This nanomaterial was loaded with the TGF-β 
receptor inhibitor compound SD-208 and successfully reversed 
the exhausted state of T cells in vivo83. Beyond TGF-β inhibition, 
small-molecule delivery for STAT3/STAT5 pathway inhibition 
could be utilized to decrease levels of T-cell exhaustion, as acti-
vation of the transcription factor STAT3/STAT5 following TCR/
CD28 co-stimulation is a precursor for expression of the T-cell 
exhaustion marker FOXP3 (ref. 86). A recent study84 employed this 
strategy in a mouse model of melanoma and delivered a regula-
tory T-cell-targeted hybrid nanomaterial that inhibited the STAT3/
STAT5 pathway using imatinib, resulting in enhanced CD8+ T-cell 
infiltration in tumour tissue and superior tumour growth inhibi-
tion compared with freely administered imatinib. The results of 
these investigations support the continued exploration of inhibiting 
immunosuppressive pathways to overcome T-cell exhaustion and 
enhance the therapeutic efficacy of T-cell immunotherapy.

Given the separate successes of using cytokines to stimulate 
immune responses and inhibitors to prevent immune suppres-
sion, many investigations have sought to combine these strategies 
and utilize nanomaterials for the co-delivery of immune stimula-
tory signals and immune suppression inhibitors85,87. One study85 
synthesized 100 nm iron nanomaterials modified with antibod-
ies for CD137 (anti-CD137) and programmed death-ligand 1 
(anti-PD-L1) — referred to as ‘immunoswitches’. Anti-CD137 
provided co-stimulation signalling to enhance T-cell proliferation, 
while anti-PD-L1 blocked PD-L1–PD-1 interactions and thus pre-
vented PD-1-mediated T-cell exhaustion. The investigation used 
these immunoswitches in a mouse model of melanoma, demon-
strating greatly enhanced CD8+ T-cell counts in both tumour tis-
sue and tumour-draining lymph nodes, as well as inhibited tumour 
growth. Notably, this technology effectively expanded T  cells 
in vivo without inducing exhaustion. Another study87 showed that 
combined delivery of both an immune stimulatory signal (IL-2) 
and a TGF-β inhibitor (SB505124) via liposome-coated polymeric 
gels also increased T-cell infiltration and prolonged survival in a 

Table 1 | Characteristics of the T cells used for aCT

CTl TIl TCr-T Car T

Source Isolated from healthy 
donors sharing relevant 
MHC alleles.

Isolated from patient’s own 
tumour.

Manufactured from autologous or allogeneic peripheral blood 
T cells, cord blood T cells or iPSC-derived T cells.

Specificity EBV, CMV or HPV antigens. Mixed population with various 
specificities.

Single tumour antigen. Single or multiple tumour antigens 
depending on design.

Target type TCR binds peptide from target antigen presented in complex with self MHC molecule. CAR binds antigen directly.

Target location Antigen can be expressed in any subcellular location since the antigen presentation 
pathway will result in surface-expressed peptide–MHC complexes.

Cell surface or secreted targets 
only.

Pros Safety Safety, efficacy Evidence for activity in 
solid cancers.

HLA independence

Cons Virus-driven tumours only. Difficult to manufacture. not 
feasible for many tumours.

Few patients express both 
antigen and correct HLA 
allele.

Few responses in solid cancers 
thus far.

EBV, Epstein–Barr virus; CMV, cytomegalovirus; HPV, human papillomavirus; HLA, human leukocyte antigen.
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mouse model of melanoma87. In all, these results demonstrate the 
ability of nanomaterial-based systems to modulate T-cell behaviour 
in vivo, illustrating their potential to impact future cancer immuno-
therapy applications.

Backpacking nanomaterials for in  vivo T-cell expansion. As an 
alternative to the separate delivery of nanomaterials and T  cells, 
nanomaterials can be attached to T  cells in a strategy known as 
‘backpacking’ to achieve in vivo T-cell expansion (Fig. 3(ii)). In this 
method, nanomaterials are conjugated to the T cell, such that their 
contents are delivered primarily to the T cell in a pseudo-autocrine 
pattern88. Since this backpacking strategy conjugates nanomateri-
als only to the target cell population — the therapeutic T cells — it 
results in higher delivery specificity and decreased in vivo toxicity89. 
A recent study from the same group developed a nanogel incorpo-
rating IL-15 superagonist complexes (IL-15Sa) via the crosslinking 
of disulfide bonds that, when backpacked onto CAR T  cells, was 
able to control T-cell expansion in a stimuli-responsive manner56. 
When the CAR T-cell–nanogel system was infused into a mouse 
model of melanoma, it recognized and bound cancer cells, and the 

antigen-specific recognition increased the reduction potential on 
the T-cell surface, allowing for the cleavage of disulfide bonds to 
release IL-15Sa from the nanogel. IL-15Sa then induced expansion 
of CAR T cells, and this controlled-release strategy led to a 16-fold 
increase in T-cell expansion compared with freely administered 
IL-15Sa. Moreover, this nanogel backpacking system showed lim-
ited systemic toxicity in vivo, while systemic injection of free cyto-
kines for T-cell expansion is associated with severe toxicity89,90. Most 
importantly, the nanogel-modified CAR T cells showed enhanced 
therapeutic efficacy and prolonged survival in vivo56. This approach 
of backpacking T  cells with cytokines has recently entered clini-
cal trials for treating a variety of solid tumours and lymphomas 
(Table 2)43,56. In addition to using these strategies to enhance T-cell 
expansion in  vivo, several studies also demonstrated that back-
packing nanomaterials encapsulating therapeutic small molecules 
can synergistically inhibit tumour cell growth and improve mouse 
survival91–94. The success of these studies supports the continued 
investigation of this backpacking nanomaterial strategy, as it has the 
potential to deliver a variety of other compounds that have been 
too toxic or non-specific in previous systemic delivery strategies. 
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Fig. 2 | The current nanomaterial toolbox can be applied to in vivo T-cell therapies. a–c, Current strategies for expanding the functionalities of 
nanotechnologies include surface characteristics (a), physicochemical properties (b) and encapsulation and release features (c) of nanomaterials.  
d, nanomaterials with optimized features could greatly benefit future T-cell cancer immunotherapies in vivo.
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Further, future studies may improve on these backpacking nanoma-
terials to incorporate systems that monitor T-cell activity or involve 
more intelligent controlled-release strategies to enhance in vivo effi-
cacy while decreasing systemic toxicity.

Nanomaterials-based vaccines for in  vivo T-cell expansion. 
Engineered T  cells can also be expanded in  vivo by utilizing 
nanomaterials-based vaccination strategies (Fig. 3(iii))95. Different 
from the expansion induced by targeted nanomaterials and back-
packing nanomaterials, the expansion of T  cells mediated by 
nanomaterials-based vaccines mimic the physiological process 
that T cells undergo upon antigen-specific priming and boosting. 
Many studies have demonstrated the controllable expansion of 
CAR T cells by designing a CAR with an additional antigen recep-
tor specific for an exogenous antigen, leading to in vivo CAR T-cell 
expansion reliant on subsequent vaccination with the exogenous 
antigen96,97. A recent study98 took this concept a step further by 
developing a vaccine strategy to expand CAR T cells directly within 
the lymph node microenvironment. They designed amphiphile 
CAR T-cell ligands (amph-ligands) that bound endogenous albu-
min following injection, allowing them to be trafficked to lymph 
nodes and preferentially anchored to the surface of dendritic cells 

(DCs)99,100. The DCs then provide co-stimulatory signals to boost 
the expansion of CAR T cells in vivo. The therapeutic efficacy of this 
approach was investigated using a mutant epidermal growth factor 
receptor (EGFRvIII)-specific CAR and an amph-ligand of PEG– 
distearoylphosphatidylethanolamine (PEG–DSPE) conjugated to  
the EGFRvIII peptide pepvIII in a mouse model of EGFRvIII+  
glioma98. The EGFRvIII-specific CAR T cells and pepvIII treatment 
was shown to substantially expand CAR T cells in vivo with improved 
CAR T-cell infiltration in tumours as well as delayed tumour growth 
and prolonged survival compared with an EGFRvIII-specific CAR 
T-cell treatment alone. Other studies have demonstrated the ‘sec-
ondary antigen’ strategy to induce T-cell expansion, including a 
recent study57 that developed a lipid nanomaterial-based mRNA 
vaccine (CARVac) to circumvent the low persistence of CAR 
T  cells in  vivo. This investigation featured CAR T  cells target-
ing the tight junction protein claudin 6 (CLDN6) combined with 
the CARVac, a lipid nanomaterial encapsulating mRNA encoding 
CLDN6. Following adoptive transfer of the CLDN6-CAR T  cells, 
the CARVac was intravenously injected, leading to the expression 
of CLDN6 on the surface of antigen-presenting cells and the release 
of co-stimulatory signals for effective CAR T-cell priming. The 
CARVac injection greatly enhanced CAR T-cell numbers, peaking 
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Fig. 3 | Nanomaterials for in vivo T-cell expansion. nanomaterials can be designed for targeted delivery to T cells and induce T-cell activation and 
expansion in vivo (i). Backpacking nanoparticles are attached to the T-cell surface and release their cargo of stimulatory cues in response to environmental 
or applied stimuli, leading to precise control over the expansion of T cells in vivo (ii). Vaccine nanoparticles that target antigen-presenting cells, such as 
DCs, can activate these cells and induce T-cell expansion in vivo (iii).
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Table 2 | Preclinical and clinical studies of nanomaterials-based T-cell cancer immunotherapies

Nanomaterials Cargo molecules Model/indication Stage reference

Nanomaterials for 
T-cell expansion 
in vivo

T-cell-targeted delivery

Poly(beta-amino ester)-based 
nanomaterial

Plasmids encoding a 194-
1BBz CAR and a piggyBac 
transposase

TBD Phase 1 
projected 
2020–2021

63

Liposome IL-2–Fc fusion protein Mouse melanoma Preclinical 55

Liposome TGF-β inhibitor (SB525334) Mouse melanoma Preclinical 82

PLGA–PEG nanomaterial TGF-β receptor inhibitor 
(SD-208)

Mouse colon cancer Preclinical 83

T-cell (Treg)-targeted hybrid 
nanomaterial

STAT3/STAT5 pathway inhibitor 
(imatinib)

Mouse melanoma Preclinical 84

Iron nanomaterial Anti-CD137 and anti-PD-L1 Mouse melanoma Preclinical 85

Liposome-coated polymeric gel Mouse IL-2 and a TGF-β 
inhibitor (SB505124)

Mouse melanoma Preclinical 87

Backpacking nanomaterials

IL-15 superagonist complex nanogel IL-15 superagonist complex Various solid tumours 
and lymphomas

Phase 1 56

Multilamellar liposomal vesicles A2a adenosine receptor 
inhibitor (SCH-58261)

Mouse model of human 
ovarian cancer

Preclinical 93

Nanomaterials-based vaccines

Amphiphile ligands (EGFRvIII 
peptide-conjugated DSPE–PEG)

nA Mouse glioma expressing 
EGFRvIII+

Preclinical 98

Lipid nanomaterial mRnA encoding the tight 
junction protein claudin 6 
(CLDn6)

Mouse melanoma 
expressing CLDn6

Preclinical 57

Nanomaterials 
overcome physical 
barriers and 
hostile tumour 
microenvironments

Nanomaterials that target physical 
barriers

PLGA nanomaterial Photothermal agent indocyanine 
green

Mouse melanoma Preclinical 104

Calcium phosphate nanomaterials 
with lipid bilayer coating

An antifibrotic compound 
α-mangostin and a plasmid 
encoding the stimulatory 
cytokine LIGHT

Mouse pancreatic cancer Preclinical 59

Nanomaterials that reverse the 
immune-suppressive environment

Lipid nanomaterial A PI3K inhibitor (PI-3065) and 
a T-cell stimulator (7DW8-5)

Mouse breast cancer Preclinical 61

Multilamellar liposomal vesicles A2a adenosine receptor 
inhibitor (SCH-58261)

Mouse model of human 
ovarian cancer

Preclinical 93

Nanomaterials for local T-cell 
delivery

Macroporous alginate scaffolds IL-15 superagonists, antibodies 
for CD3, CD28 and CD137

Mouse breast cancer, 
mouse ovarian cancer

Preclinical 60

nickel–titanium alloys Antibodies for CD3, CD28, 
CD137

Mouse model of human 
pancreatic cancer 
expressing receptor 
tyrosine kinase-like 
orphan receptor (ROR1)

Preclinical 111

Nanomaterials as 
NBiTes

Liposome Human epidermal growth factor 
receptor 2 (HER2) and CD20 
antibodies

Mouse breast cancer Preclinical 131

Polystyrene nanomaterial Antibodies for HER2 and 
calreticulin protein

Mouse breast cancer Preclinical 132

Exosome Exosome expressing antibodies 
for CD3 and epidermal growth 
factor receptor (EGFR)

Mouse breast cancer Preclinical 58

TBD, to be determined; nA, not applicable; LIGHT, tumour necrosis factor superfamily 14.
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3–4 days after vaccination in mice. The in vivo experiments showed 
that a sub-therapeutic CLDN6-CAR T-cell dose combined with a 
single injection of the CARVac completely inhibited tumour growth 
in lymphodepleted mice. Further, one investigation demonstrated 
that vaccines targeting cross-presenting DCs (BATf3+CD103+CD8+ 
in mice and CD141+ in humans) induced potent antigen-specific 
T-cell proliferation101, indicating that future studies should consider 
targeting this DC subtype for enhanced in vivo T-cell expansion. In 
all, these results highlight the potential of designing nanomaterials 
to effectively expand engineered T cells in vivo and enhance their 
performance.

Nanomaterials to improve T-cell engagement with solid 
tumours
ACT has been used in the clinic for the treatment of many cancer 
types102. However, current therapies are approved for blood cancers 
such as B-cell lymphoma14,103. Solid tumour treatment using T cells 
is limited by both physical barriers16,17 and immune-suppressive 
environments. Considering these obstacles, this section will discuss 
the potential of nanomaterials to overcome the immune-suppressive 
environment and physical barriers to T-cell therapy, and describe 
how nanomaterial design can be used to enhance T-cell penetration, 
enable localized T-cell delivery and help modulate the suppressive 
tumour microenvironment.

Nanomaterials enhance T-cell penetration in solid tumours. One 
method for enhancing T-cell penetration in solid tumours involves 
the use of nanomaterials designed to remove the inhibitive ECM 

barrier (Fig. 4a). For example, one study104 utilized a PLGA nano-
material encapsulating the photothermal agent indocyanine green. 
Briefly, in a mouse model of melanoma, the nanomaterial was 
injected intratumorally, and subsequent near-infrared light irra-
diation allowed for the killing of tumour cells and the disruption of 
the ECM before CAR T-cell administration. This treatment led to 
reduced interstitial fluid pressure, improved CAR T-cell penetration 
in the tumour tissue and increased antitumour efficacy compared 
with CAR T cells alone. Instead of nanomaterial-based photothermal 
therapy to remove the fibrotic ECM of solid tumours, some inves-
tigations have explored the use of nanomaterials delivering an anti-
fibrotic drug59. In a recent study59, a core–shell calcium phosphate 
liposome nanomaterial (Nano-sapper) was developed to enhance 
CTL infiltration in an immune-excluded tumour (in which T cells 
are restricted to a peritumoral zone rich in fibroblasts, with few lym-
phocytes within the epithelial tumour mass itself)105,106 in a mouse 
model of pancreatic cancer59,107. As α-mangostin has been shown 
to effectively reduce liver fibrosis levels in mice108, this molecule 
was loaded into the Nano-sapper to reduce the physical barriers of 
the solid tumour. Additionally, a plasmid encoding the stimulatory 
cytokine LIGHT (tumour necrosis factor superfamily 14, TNFSF14, 
CD258) was co-delivered in the Nano-sapper to recruit CTLs to the 
immune-excluded tumour, and the ECM glycoprotein-targeting 
peptide FHK was conjugated to the nanomaterial surface. The 
Nano-sapper effectively reversed the overactivation of fibroblasts 
and generated lymphocyte-recruiting chemoattractants in  situ 
in the tumour tissue, thus enabling CTL infiltration. Further, the 
Nano-sapper was shown to enhance checkpoint blockade therapy 
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Fig. 4 | Nanomaterials overcome physical barriers and immune-suppressive environments for T-cell therapy. a, nanomaterials can be designed to target 
the ECM and degrade the physical barriers inhibiting T-cell penetration and tumour cell targeting. b, nanomaterials targeting the tumour microenvironment 
can deliver stimulatory cues to the tumour tissue and reverse the suppressive tumour microenvironment (immunological barrier), thus activating T-cell 
activity. c, nanomaterials can locally deliver T cells directly to the tumour tissue with sustained release, which enhances tumour cell killing.
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against the immune-excluded solid tumour, indicating the potential 
for ECM removal to enhance cancer immunotherapy.

Nanomaterials reverse the immune-suppressive environment in 
solid tumours. Beyond an enriched ECM, aggressive solid tumours 
typically have a suppressive tumour microenvironment wherein 
immune cells and cytokines interact with tumour cells to mediate 
immune tolerance in tumour tissue, which affects clinical immu-
notherapy outcomes109. This tumour microenvironment can lead 
to exhaustion or even death of adoptively transferred T  cells110. 
Thus, blocking the effects of an immune-suppressive tumour 
microenvironment could improve T-cell therapy in solid tumours  
(Fig. 4b). For example, one study61 utilized a lipid-based nano-
material containing both a PI3K inhibitor (PI-3065) and a T-cell 
stimulator (7DW8-5), which inhibited suppressor cells and simul-
taneously activated T cells in the tumour microenvironment. In a 
mouse model of breast cancer, this combination of treatments pro-
vided a two-week window for CAR T-cell therapy to effectively treat 
solid tumours61. In another study, CD19-specific CAR T cells were 
modified with multilamellar liposomal vesicles conjugated to their 
surface93. The multilamellar liposomal vesicles were loaded with a 
small molecule A2a adenosine receptor antagonist (SCH-58261) 
that can inhibit interactions between the A2a receptor on the T-cell 
surface and adenosine, thus preventing T-cell inactivation93. This 
therapeutic strategy was used in a mouse model of ovarian cancer 
where the tumour cells were engineered to overexpress CD19, and 
it enhanced accumulation of T cells in tumour sites and a success-
ful reversal of the immune-suppressive tumour microenvironment, 
leading to increased CAR T-cell therapeutic efficacy93.

Nanomaterials for local T-cell delivery to solid tumours. In 
addition to altering physical barriers and the immune-suppressive 
environment to enhance CAR T-cell penetration and therapeutic 
efficacy, nanomaterials can also be combined with polymeric scaf-
folds as a means to locally deliver T  cells to tumour tissue60,111,112 
(Fig. 4c). One study developed a porous scaffold from polymer-
ized alginate that contained mesoporous silica particles encapsu-
lating IL-15 superagonists, coated with lipid bilayers and featuring 
antibodies for CD3, CD28 and CD137 conjugated to their surface. 
The scaffold also had T  cells bound to its surface via a synthetic 
collagen-mimetic peptide60. Thus, sustained release of the soluble 
IL-15 superagonist complex, combined with antibody surface 
modifications, allowed the particles to keep the delivered T  cells 
in an activated and proliferative state. The study investigated the 
in  vivo antitumour effects of this T-cell-functionalized scaffold 
in a post-resection model of breast cancer, which showed that 
none of the tumours in mice receiving the T-cell scaffold system 
relapsed while mice in other treatment groups — including intra-
venously injected T cells, locally administered T cells, and locally 
administered T cells with IL-15 superagonist and antibodies — all 
experienced tumour relapse and death. Moreover, T cells delivered 
via the scaffold showed increased survival time in an unresected 
mouse model of ovarian cancer. However, while the polymer-based 
scaffolds could effectively expand T  cells and enhance the ther-
apy in  vivo, they have a random or semi-random pore network, 
which may result in unpredictable cell loading and release kinet-
ics that can impact T-cell therapeutic efficiency111. A more recent 
study111 showed that nickel–titanium alloys in thin films with 
precisely defined micropatterned mesh structures (abbreviated as 
TFN) can load antigen-specific CAR T  cells for improved T-cell 
therapy. The TFN networks show well-organized loading of CAR 
T cells on the surface with a narrow distribution of T-cell counts. 
In a mouse model of ovarian cancer, this localized delivery method 
greatly enhanced the central memory and effector T-cell popula-
tions in tumour tissue without inducing CAR T-cell exhaustion. 
Compared with intravenous or intratumoral T-cell delivery, CAR 

T cells delivered by the TFNs were more efficacious and suppressed 
solid tumour growth in several mouse models. Though the scaffolds 
described here enhanced CAR T-cell performance, T cells delivered 
in close proximity to tumours still face the obstacle of inefficient 
penetration60, and future studies should focus on enhancing the 
penetration of locally delivered T cells into tumour tissues.

Nanomaterials to prevent target antigen loss
T-cell-mediated killing of tumour cells is dependent on the inter-
action between surface receptors on T-cells and the antigens pres-
ent on cancer cells113. Thus, tumour cells may escape T-cell killing 
by manipulating these interactions via decreasing or eliminating 
the expression of major histocompatibility complex (MHC) class 
I/antigen, co-stimulatory molecules, and other markers on their 
cell surface, leading to low therapeutic efficiency or even resis-
tance114. To overcome this, studies have developed ‘universal’ CARs 
where the targeting domain of the CAR is provided separately in 
a ‘plug-and-play’ fashion, enabling antigen swapping during treat-
ment115,116. Another potential solution for antigen escape/loss is 
the development of bispecific T-cell engagers (BiTEs). BiTEs have 
been developed to bridge T cells and tumour cells, thus redirecting 
T cells to tumour cells and providing a promising strategy for cancer 
immunotherapy117–119. BiTE-induced tumour cell killing is a MHC 
I-independent process, as no antigen presentation or ex vivo engi-
neering of T-cell receptors is needed120,121, making BiTEs an effective 
strategy for generating antigen-specific T-cell immune responses 
towards tumours with low MHC I/antigen expression. Studies 
demonstrate that patients with B-lineage acute lymphoblastic leu-
kemia treated with blinatumomab (an FDA-approved BiTE) show 
substantially prolonged survival compared with patients receiving 
traditional chemotherapy122. However, as BiTEs have short blood 
circulation times117, effective therapy outcomes rely on constant 
administration, which may lead to patient discomfort123. Further 
limitations involve the binding affinity between each BiTE and the 
T-cell surface. The binding force maintained by a single BiTE may 
not be enough to firmly conjugate T  cells to tumour cells124, and 
many BiTEs may be needed to establish each pair125. In all, these 
problems restrict the broad clinical application of the BiTEs for can-
cer immunotherapy.

The development of nanomaterial-based BiTEs (NBiTEs) pro-
vides a great opportunity for improving BiTE therapy (Fig. 5). First, 
nanomaterials can have a three-dimensional structure and control-
lable morphology, as well as flexible surface-modification properties 
that provide diverse surface topologies126. Certain surface patterns 
of antibody-modified nanomaterials induce multivalent contact 
between antibodies and cells125, which could enhance the binding 
affinity between T cells, tumour cells and BiTEs. Another benefit of 
the NBiTEs is prolonged circulation time127, as nanomaterial surface 
coatings can decrease clearance to prolong circulation time in the 
blood128,129. This means that a long-term therapeutic effect may be 
achievable with NBiTEs, allowing them to avoid the limitation of 
frequent administration. Moreover, it is possible to design NBiTEs 
that encapsulate stimulatory molecules, such as IL-2, which can be 
released over time to sustain T-cell activation and enhance antitu-
mour efficacy130. Several successful NBiTEs have been reported, 
including in mouse models of breast cancer. For example, one 
study131 conjugated both human epidermal growth factor recep-
tor 2 (HER2) and CD20 antibodies to the surface of liposomes and 
demonstrated a 25-fold increase in antibody potency using a cell 
viability assay. Moreover, enhanced tumour growth inhibition was 
observed in the NBiTE-treated mice compared with free antibodies, 
illustrating the benefit of multivalent contact between the liposome 
and cells. Another study132 designed a 30 nm polystyrene-based 
NBiTE with antibodies for HER2 and calreticulin protein on its 
surface. The NBiTEs showed remarkably lower dissociation con-
stants (Kd) compared with free anti-HER2 antibody because of their  
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multivalent contact with HER2 (ref. 132). This NBiTE not only showed 
HER2-specific cancer cell killing but also induced enhanced antigen 
uptake by antigen-presenting cells and a durable tumour-specific 
immune response. Recently, in order to enhance the circulation 
time of NBiTEs, one group58 engineered a HEK293 cell that over-
expresses single-chain variable fragments (scFVs) for both CD3 
and epidermal growth factor receptor (EGFR) to target T  cells 
and EGFR-positive triple-negative breast cancer cells, respectively. 
Exosomes secreted by the cell line were collected using centrifuga-
tion, and they demonstrated effective conjugation to both T  cells 
and breast cancer cells, showing potent antitumour immunity. In 
all, these studies demonstrate that NBiTEs are promising agents for 
re-directing T-cell functions for cancer immunotherapy. Since the 
NBiTE-induced tumour cell killing is a MHC I-independent pro-
cess, this novel immunotherapy strategy has great potential to solve 
the problem of antigen loss during T-cell therapy.

Future directions and outlook
Substantial advances have been made in the development of 
nanomaterials to enhance T-cell therapy, including nanomaterial 
designs that enhance T-cell expansion, redirect T-cell functions 
and overcome the physical and biological barriers of solid tumours. 
However, formidable challenges remain for the clinical application 
of nanomaterials in T-cell immunotherapy, as discussed below.

To start, further investigations are needed to establish strategies 
for the rational design of nanomaterials for their desired applica-
tions in cancer immunotherapy. Many fundamental questions 
about the effects of nanomaterial composition, size, shape, elasticity 
and surface charge on T-cell function must be answered for apply-
ing nanomaterials to T-cell therapies. When considering surface 
modifications, effective targeting methods — such as multi-ligand 
modifications133 — must be developed and validated to reduce 
non-specific uptake and prevent toxicity. Further, the patterns and 
density of these modifications, as well as general nanomaterial sur-
face topology, must be evaluated to optimize nanomaterial designs 
for T-cell binding and activation, as an understanding of this rela-
tionship could enhance nanomaterial–T-cell interactions for strate-
gies such as NBiTEs134. In terms of cargo, nanomaterials serve as 
a highly versatile delivery platform with the ability to traffic small 
molecules, genes, antibodies, and even combinations of these thera-
peutics, but the optimized cargo to work synergistically with cur-
rent T-cell therapies has yet to be established. Further, the controlled 
release of cargo from these nanomaterials via stimuli-responsive 
drug delivery has been extensively investigated in cancer nano-
medicine51, and these same advancements should be incorporated 
into nanomaterial applications in T-cell therapies as diverse cargos 

are investigated. As future work begins to address all of these areas 
of interest and continues vetting nanomaterials for applications in 
cancer immunotherapy, it is also important to consider the bio-
degradability, toxicity and long-term safety of the nanomaterials 
themselves as they are developed.

Another consideration for future development is the manufac-
turing of nanomaterials on a clinical scale. As of 2017, of all the sub-
missions to the US FDA for drug products utilizing nanomaterials, 
liposomes were the most prevalent category (33% of drug products) 
followed by drug products containing nanocrystals (23%), with one 
reason for their widespread use being the simplicity of manufactur-
ing these structures27. However, in the context of nanomaterials for 
T-cell therapy, many studies utilize complex nanomaterial designs. 
With increasing design complexity, manufacturing costs and reg-
ulatory procedures to demonstrate safety and efficacy increase as 
well. Thus, researchers should keep the final goal of the nanomate-
rial — widespread clinical application — in mind when engineer-
ing nanomaterial solutions. Specifically, we suggest that researchers 
in this field keep in mind the cost, good manufacturing practice 
(GMP)-grade scale up and quality control of their nanomaterial in 
future studies.

Further, while nanomaterial-based strategies have been devel-
oped for different facets of T-cell therapy, such as in  vivo T-cell 
expansion, T-cell re-direction and overcoming physical barriers and 
immune-suppressive environments, there are several unaddressed 
obstacles that nanomaterials have the potential to overcome. One 
major limitation to adoptively transferred T cells is a lack of con-
trol over their in vivo behaviour. Recent investigations are seeking 
to develop strategies to remotely control in vivo T-cell activity135,136, 
and synthetically engineered T cells have been developed to undergo 
expansion, cancer-specific killing or death when exposed to spe-
cific small molecules137, antibodies103 or light136. As shown in Fig. 2, 
the cancer nanomedicine field includes many remotely controlled 
drug release systems to provide on-demand release of cargo with 
both internal and external stimuli51, but these technologies need to 
be employed in cancer immunotherapy to precisely control T-cell 
activity in vivo. However, to investigate the impact of nanomateri-
als on T-cell activity, in vivo tracking and visualization tools with 
spatiotemporal resolution are urgently needed to study how infused 
T  cells engage target cells, expand, exhaust and die. As nanoma-
terials have been extensively investigated as contrast agents to 
enhance many kinds of imaging modality138–141, T cells labelled with 
nanomaterial-based contrast agents should be explored to visualize 
activity in real time in vivo141. As this work would allow for a more 
fundamental understanding of adoptively transferred T  cells, a 
focus should also be placed on investigating the uncontrolled T-cell 
expansion and abnormal monocyte interactions that may induce 
severe cytokine release syndrome and even patient death142,143, and 
effective cytokine release syndrome management methods must 
be explored. Beyond utilizing nanomaterials to study in vivo T-cell 
behaviour, nanomaterial solutions should be more broadly incorpo-
rated into ACTs. Several nanomaterial studies focus on modulating 
CAR T-cell therapy, but only a few investigate TIL, CTL and TCR-T 
therapies144,145 even though these therapies could benefit from nano-
materials that increase their potency and in vivo expansion while 
reducing toxicity. Further, nanomaterials developed for T-cell-based 
immunotherapies could likely be used to modulate other immune 
cells, such as macrophages146,147 and natural killer cells148, and B-cell 
therapies149 for other types of immunotherapy.

In all, nanomaterials are being widely explored to improve T-cell 
cancer immunotherapies, and they have demonstrated success 
for in vivo T-cell expansion, altering T-cell activity and overcom-
ing barriers to solid tumour delivery. These promising nanotech-
nologies that can regulate T-cell function have the potential for 
more widespread use in both fundamental immunology research 
and clinical applications for cancer immunotherapy. With their  

Cytotoxic T cell Cancer cell

NBiTE

MHC-independent killing

Fig. 5 | NBiTes for cancer immunotherapy. A typical nBiTE is developed 
by adding two scFvs on the nanoparticle surface, with one scFv targeting 
a T-cell-specific antigen while the other targets a tumour-specific antigen. 
The multivalent contact at the nanomaterial/cell interfaces makes nBiTEs 
bridge T cells and tumour cells more effectively than traditional BiTEs and 
induces potent tumour cell killing.
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continued optimization, nanomaterials could ultimately expand the 
benefits of current T-cell-based cancer treatments and lead to the 
development of more advanced cancer immunotherapies.
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