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A B S T R A C T

While initial approaches to adoptive T cell therapy relied on the identification and expansion of rare tumour-
reactive T cells, genetic engineering has transformed cancer immunotherapy by enabling the modification of
primary T cells to increase their therapeutic potential. Specifically, gene editing technologies have been uti-
lized to create T cell populations with improved responses to antigens, lower rates of exhaustion, and poten-
tial for use in allogeneic applications. In this review, we provide an overview of T cell therapy gene editing
strategies and the delivery technologies utilized to genetically engineer T cells. We also discuss recent inves-
tigations and clinical trials that have utilized gene editing to enhance the efficacy of T cells and broaden the
application of cancer immunotherapies.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

In the past decade, cellular therapies have revolutionized cancer
immunotherapy. Notably, adoptive T cell therapies have been widely
investigated in preclinical and clinical stages following the FDA
approval of five chimeric antigen receptor (CAR) T cell therapies:
Kymriah, Yescarta, Tecartus, Breyanzi, and Abecma [1�4,5]. Adoptive
T cell therapy involves the isolation and subsequent reinfusion of
patient T cells to mediate antitumour, antiviral, or anti-inflammatory
effects [6]. Initial adoptive T cell therapy approaches relied on identi-
fying and expanding tumour-reactive T cells, which harnesses the
endogenous immune system to act against cancer and viral infection
[7�9]. Instead of relying on these rare T cell populations, primary T
cells can be genetically engineered to improve their ability to target
cancer cells [10].

Genetically engineered therapies, including CAR T cell and engi-
neered T cell receptor (TCR) therapies, involve isolating patient T cells
and reprogramming them ex vivo to target cancer cells [11�13]. The T
cells are engineered to express a receptor, expanded, and transferred
back into the patient [14]. These therapies rely on exogenous gene
expression induced in primary T cells, resulting in transient or stable
expression of the transgenic receptor in a wild type background [15].
By introducing receptors that bind to specific cancer markers, the
transgenic T cells can target tumour cells to achieve positive thera-
peutic outcomes [16]. However, this is typically achieved using viral
transduction, which has a smaller cargo capacity, higher immunoge-
nicity, and higher manufacturing cost than non-viral delivery systems
[17,18]. These limitations have driven the field to explore alternative
gene editing technologies—including transposons, designer nucle-
ases, and clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR�associated protein 9 (Cas9)—to introduce exoge-
nous receptors and precise genetic modifications [19]. The recent
growth of gene editing in T cells and FDA-approved CAR T cell thera-
pies have motivated the exploration of novel delivery systems—such
as electroporation, cell squeezing, and nanoparticles—to further
enhance therapeutic efficacy (Fig. 1) [20].

In addition to introducing exogenous receptors and redirecting T
cell function, gene editing has been used to generate T cells with
improved antigen responses, enhanced antitumour activity, and
potential for use in allogeneic applications. CAR T cell therapies have
been successfully applied to treat B cell malignancies. However, treat-
ing solid tumours remains challenging, as local immune suppression
and prolonged stimulation in the tumour microenvironment lead to
T cell dysfunction and exhaustion [21,21�23]. Recent advances in
gene editing and delivery technologies could be applied to treat can-
cers previously resistant to T cell immunotherapies. In this review,
we discuss current ex vivo T cell engineering strategies and their use
in clinical applications.
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Fig. 1. Delivery technologies for gene editing of T cells. Gene editing strategies that have been explored in T cells for applications in cancer immunotherapy include transposons,
designer nucleases like zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9. In addition to viral transduction, novel delivery systems—such as electroporation, cell squeezing, and nanoparticles—have been utilized in new immunotherapy strat-
egies to further enhance therapeutic efficacy. Figure was created by the authors with BioRender.com.
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2. Gene editing technologies used in T cells

The advent of gene editing has enabled more specific genetic
manipulation to optimize T cell engineering and function, further
advancing the scope of cellular therapies [19]. Many gene editing
strategies have been explored for T cell engineering, including trans-
posons, designer nucleases like zinc finger nucleases (ZFN) and tran-
scription activator-like effector nucleases (TALEN), and CRISPR/Cas9
[24]. These platforms present various advantages and disadvantages
in their editing specificity and efficiency, and ability to be delivered
to T cells.
2.1. Transposons

Transposons (Fig. 2a) are units of DNA that can change their posi-
tion within the genome and are used in non-viral cellular engineering
[25]. The DNA transposon system involves a transposase that binds to
terminal inverted repeats (TIRs) and mobilizes DNA flanked by these
TIRs [26]. Since the Sleeping Beauty (SB) DNA transposon is capable of
transposition in human cells, it has been used in several early clinical
trials exploring CAR T cell therapy [27,28]. The SB platform can pro-
duce stable transgene expression with low genotoxicity and minimal
disruption to other essential genes [29,30]. Compared to viral



Fig. 2. Comparison of SB, ZFN, TALEN, and CRISPR/Cas9 platforms. Advantages (green) and disadvantages (red) of the (a) Sleeping Beauty (SB) transposon, (b) ZFN, (c) TALEN, and (d)
CRISPR/Cas9 platforms in their editing specificity and efficiency, and ability to be delivered to T cells. Figure was created by the authors with BioRender.com.
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systems, transposons are more cost-effective, less toxic, and can facil-
itate co-delivery of multiple genes [17,31,32]. Although the SB
platform has promising applications in cancer immunotherapy,
its use has been limited by low efficiency of plasmid DNA deliv-
ery into primary human cells [33,34]. Furthermore, this platform
can only introduce a transgene into a cell while gene editing
technologies like ZFN, TALEN, and CRISPR/Cas9 can disrupt or
replace a specific gene, making them more versatile for T cell
engineering [35].

2.2. Designer nucleases

While numerous designer nucleases have been developed for
gene editing, ZFN (Fig. 2b) and TALEN are most frequently used in T
cell engineering [36,37]. Multiple zinc finger domains can be cloned
in tandem to generate a “designer” enzyme that recognizes a specific
DNA sequence [38]. Since the FokI endonuclease components func-
tion as a dimer, a pair of ZFN is required to bind at the target sites
and cleave DNA [35]. Following this double-stranded cut, endoge-
nous non-homologous end joining (NHEJ) or homologous recombina-
tion (HR) repair mechanisms are recruited to the break [24]. NHEJ can
result in small insertions or deletions (indels) while HR is used for
gene replacement [39]. The specificity of ZFN-mediated gene editing
depends on the amino acid sequence of the fingers, number of fin-
gers, and interaction of the nuclease domain [19]. As such, multiple
linked zinc fingers can create highly specific recognition sites with
minimal off-target effects [40�42]. In addition, the small size of ZFN
enable efficient delivery in T cells [43]. The ZFN platform has been
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investigated in cancer immunotherapy clinical trials, but its main
application in T cells is to target CCR5 and CXCR4, the co-receptors
for HIV entry into T cells [44�48]. While this technology is
specific and effective, it is less efficient than CRISPR/Cas9 because it
requires proteins to be specifically engineered for each target in the
genome [24].

TALEN (Fig. 2c) is similar to ZFN in that it consists of an engineered
designer nuclease. TALEN is composed of a non-specific DNA cleavage
domain and a sequence-specific DNA-binding domain, which con-
tains a highly conserved repeat sequence from transcription activa-
tor-like effector (TALE) [19]. Two TALEN modules are required to
bind to the target site, and a FokI nuclease is fused to the DNA-bind-
ing domains to cleave DNA [49]. Similar to ZFN, the specificity of
TALEN-mediated gene editing depends on the number and order of
tandem repeats in a TALE [50]. However, TALEN is more difficult to
deliver than ZFN due to the large size and repetitive nature of its
functional components [51]. In clinical trials, the TALEN platform has
been used to develop universal allogeneic T cells for cancer therapy,
but its broad use has also been limited by the substantial protein
engineering required to transition between different gene targets
[52,53].

2.3. CRISPR/Cas9

In contrast to ZFN and TALEN, CRISPR/Cas9 (Fig. 2d) requires mini-
mal alteration to reach new target sites and has been favoured for T
cell engineering in recent clinical trials [53,54]. The CRISPR/Cas9 sys-
tem is comprised of a single-stranded guide RNA (sgRNA) and a Cas9
endonuclease [55]. The sgRNA complements and binds the target
DNA site while also binding the Cas9 protein that cleaves DNA [56].
CRISPR/Cas9 can enable genomic modifications through NHEJ or
high-fidelity HR but is less specific than ZFN and TALEN, as it can tol-
erate multiple consecutive mismatches in the DNA target sequence
[57]. There are concerns that CRISPR/Cas9 gene editing could pro-
mote tumour malignancy due to off-target mutagenesis or cause
immunogenicity from anti-Cas9 responses [58,59]. However, CRISPR/
Cas9 offers the potential for simultaneous multiple loci editing. While
this strategy can be more complex to implement, it is more efficient
and scalable overall [60]. Furthermore, CRISPR/Cas9 can be delivered
in a variety of formats, including plasmid DNA encoding both the
guide RNA (gRNA) and Cas9, messenger RNA (mRNA) for Cas9 trans-
lation with a separate gRNA, and ribonucleoprotein complexes
(RNPs) of Cas9 protein and gRNA [53,61]. This versatility has enabled
the development of various strategies, but in vivo delivery remains
challenging because multiple components of the editing system must
be delivered to the same cell [53].

3. Delivery methods to T cells

Several delivery platforms have been explored in T cells, and offer
distinct advantages and disadvantages that have impacted their
application in T cell therapies. In addition to viral transduction, non-
viral delivery strategies—such as electroporation, cell squeezing, and
nanoparticles—have been recently explored to improve the safety
and efficacy of T cell therapies.

3.1. Viral

Viral transduction (Fig. 3a) has been used to achieve efficient
delivery of the CAR transgene in traditional CAR T cell engineering
[62]. Gamma-retroviruses and lentiviruses can integrate into the host
genome to enable stable gene expression, while adenoviruses and
adeno-associated viruses can induce transient expression [26].
Gamma-retroviruses and lentiviruses are most often used in
manufacturing CAR T cells due to their high transduction efficiencies
[63,64]. Similarly, lentiviruses have been used to deliver ZFN and
CRISPR/Cas9 ex vivo to disrupt specific genes for improved T cell func-
tionality [60,65,66]. In this case, the sgRNA component of the CRISPR/
Cas9 system is generally delivered via lentiviral vectors for stable
expression, while mRNA is delivered via electroporation for transient
expression [60,67].

While viral delivery is highly effective at inducing gene expres-
sion, this method poses potential risks of genotoxicity and insertional
mutagenesis caused by random insertion of transgenes into chromo-
somes [17,53]. While the exact causes remain unclear, a few patients
have experienced fatal immune responses or developed cancer fol-
lowing viral gene therapy [68�71]. However, these random inser-
tions can be therapeutically effective if gene disruption results in
improved T cell activity [72]. The intrinsic toxicity and immunogenic-
ity of viruses significantly hinder their applications in vivo, such as
for cancer treatment, where repeated drug dosing is often required
[73,74]. Furthermore, the small cargo capacity of viral systems inhib-
its co-delivery of multiple genes, which may be necessary for the
development of advanced T cell therapies [18]. These limitations
have motivated the exploration of non-viral delivery methods,
including electroporation, cell squeezing, and nanoparticles.

3.2. Electroporation

Electroporation (Fig. 3b) uses pulsed high-voltage electrical cur-
rents to transiently create small pores in the cell membrane, allowing
nanometre-sized cargo to enter the cell [75]. Electroporation can be
used to deliver mRNA or plasmid DNA, enabling gene replacement or
disruption [76,77]. This method can be as efficient as viral transduc-
tion and offers distinct advantages including a larger cargo capacity
to facilitate the delivery of multiple genes or nucleic acids [78,79].
Electroporation has been used to deliver to muscle and skin cells in
vivo and is currently being evaluated in phase I clinical trials for a
DNA vaccine against SARS-CoV-2 [80,81]. However, it is not suitable
for delivery to T cells in vivo due to its limited penetration depth and
localized administration [82]. While used in ex vivo applications, the
high voltage required for electroporation poses risks of cytotoxicity
and loss of cytoplasmic content, which can adversely affect expres-
sion profiles [83�85]. In addition, electroporation may face scalability
challenges because most commercial machines are designed for
research and development rather than large-scale manufacturing
[86]. Nucleofection is an advanced electroporation technique that
can deliver cargo to the nucleus of a cell without breaking down the
nuclear envelope, but it faces many of the same obstacles as electro-
poration regarding in vivo use. Although both electroporation and
nucleofection face these limitations, they are still promising
approaches for ex vivo gene editing in T cells [87].

3.3. Cell squeezing

Cell squeezing (Fig. 3c) is a microfluidic delivery method that
relies on mechanical membrane disruption ex vivo, which has a mini-
mal effect on transcriptional responses and does not modulate T cell
activity [85]. Cell squeezing has been used to deliver various com-
pounds, including DNA, RNA, and proteins, to embryonic stem cells
and immune cells [88]. Cell squeezing has been successfully used to
deliver dextran molecules to murine T cells, indicating that it could
be used in human T cells in the future [88]. Although cell squeezing
has the potential to reduce the risks associated with electroporation,
it requires isolating the cells for delivery, which limits its use to ex
vivo engineering applications [85].

3.4. Nanoparticles

Nanoparticles (NPs) (Fig. 3d) are emerging delivery systems for
gene editing with various advantages over viral, electrical, and
mechanical-based delivery strategies [89]. Many types of NPs have



Fig. 3. Comparison of viral, electroporation, cell squeezing, and nanoparticle delivery. Advantages (green) and disadvantages (red) of (a) viral, (b) electroporation, (c) cell squeezing,
and (d) nanoparticle delivery systems regarding their efficacy and safety. Figure was created by the authors with BioRender.com.
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been used for delivery to T cells, including those composed of lipid,
polymer, or gold materials [87]. Given the variety of platforms avail-
able, NPs are highly customizable and can deliver many different car-
gos, including DNA, mRNA, siRNA, miRNA, and even combinations of
these nucleic acids [61,90]. Moreover, these platforms can be
designed for targeted delivery by using selective surface modifica-
tions or controlled cargo release in response to T cell receptor activa-
tion [21]. NPs are less cytotoxic than viral or electroporation
methods, resulting in higher viability and subsequent expansion
capability of the engineered cell population [91,92]. NP delivery also
offers a manufacturing advantage over cell squeezing because it does
not require specific cell handling and can be easily implemented into
established protocols for generating therapeutic cells [93]. Further-
more, NP platforms can be used to deliver cargos both ex vivo and in
vivo due to the stability offered by particle encapsulation, but this has
yet to be thoroughly explored in T cells [87,94].

Although NPs have been used to successfully deliver mRNA
encoding CAR to T cells, as well as gene editing technologies to a vari-
ety of cell types, they have only recently been used for gene editing in
T cells [95]. Lipid and polymer NPs have been used to deliver CRISPR/
Cas9 ex vivo to T cells [96�99]. Other studies have used gold NPs to
deliver small molecule drugs to T cells and CRISPR/Cas9 to other cell
types, indicating the potential of this platform for further application
in T cells [100,101]. Although NPs offer many advantages over other
delivery strategies, they typically have lower transfection efficiencies,
which has motivated the development of more advanced NPs aimed
to overcome biological barriers to delivery [94,102,103]. NPs also
tend to accumulate in the liver and spleen during clearance from the
body, raising concerns about toxicity [104]. While these improved
systems have yet to be thoroughly investigated for delivery to T cells,
they hold immense potential to improve T cell immunotherapies.
4. Applications of genetically engineered T cells in cancer
immunotherapy

Recent investigations (Table 1) demonstrate how the field has
progressed as state-of-the-art gene editing and delivery technologies
have been introduced in T cells. These investigations and later clinical
trials (Table 2) have used gene editing strategies to develop T cells



Table 1
Investigations using gene editing in T cells for cancer immunotherapy.

Platform Cancer Target (Knockout) Induced T cell Expression Location of Delivery Delivery Method (Cargo)

SB10 N/A N/A DsRed reporter gene Ex vivo Nucleofection (SB10/reporter plasmid or SB10, reporter plasmids)[29]
HSB5 Melanoma N/A P53, MART-1 TCRs Ex vivo Electroporation (TCR, HSB5 mRNA)[119]
SB11 Chronic lymphocytic leukaemia, mantle cell lymphoma, diffuse

large B-cell lymphoma
TRAC, TRBC (ZFN) CD19 CAR Ex vivo Nucleofection (CAR, SB plasmids, ZFN mRNA)[140]

CD19+ B cell malignancies N/A CD19 CAR In vitro, ex vivo Electroporation (CAR, SB plasmids)[30]
CD19+ B cell malignancies HLA-A (ZFN) CD19 CAR In vitro, ex vivo Nucleofection (CAR, SB plasmids, ZFN mRNA)[141]
Chronic lymphocytic leukaemia N/A ROR1 CAR Ex vivo Electroporation (CAR, SB plasmids)[110]
Melanoma N/A HERV-K CAR Ex vivo Electroporation (CAR, SB plasmids)[111]
Melanoma, cholangiocarcinoma N/A AHNAK, ERBB2, ERBB2IP TCRs Ex vivo Nucleofection (TCR, SB plasmids)[120]
Myelogenous leukaemia, acute lymphoblastic leukaemia N/A CD123 CAR (CIK cells) Ex vivo Nucleofection (CAR, SB plasmids)[113]
Acute myelogenous leukaemia, acute lymphocytic leukaemia N/A CD13 CAR Ex vivo Electroporation (CAR, SB plasmids)[114]
CD19+ leukaemia N/A CD19 CAR, mBIL15 Ex vivo Electroporation (CAR, SB plasmids)[136]

SB100X Haematological and certain non-haematological malignancies N/A WT1 TCR In vitro, ex vivo Lentivirus (CAR), nucleofection (TCR, SB plasmids)[31]
CD19+ lymphoma N/A CD19 CAR Ex vivo Nucleofection (CAR, SB supercoiled DNA or CAR, SB plasmids)[17]
Melanoma TRAC, TRBC (miRNA) TCR-engineered T cells Ex vivo Nucleofection (TCR minicircle DNA, SB mRNA, TCR-silencing miRNA)[121]
Acute myeloid leukaemia N/A CD33 CAR (CIK cells) Ex vivo Nucleofection (CAR, SB plasmids)[115]

piggyBac Leukaemia N/A CD19 CAR Ex vivo, in vivo CD3-targeted polymer nanoparticles (194-1BBz CAR/piggyBac
plasmid, iPB7 plasmid), lentivirus (194-1BBz CAR)[95]

ZFN Acute myeloid leukaemia TRAC, TRBC WT1 TCR In vitro, ex vivo Lentivirus (ZFN)[65]
Chronic lymphocytic leukaemia, mantle cell lymphoma, diffuse

large B cell lymphoma
TRAC, TRBC CD19 CAR Ex vivo Nucleofection (CAR, SB plasmids, ZFN mRNA)[140]

CD19+ B cell malignancies HLA-A CD19 CAR In vitro, ex vivo Nucleofection (CAR, SB plasmids, ZFN mRNA)[141]
Metastatic melanoma PD-1 N/A (TIL) Ex vivo Electroporation (ZFN mRNA)[125]
N/A CCR5, AAVS1 N/A Ex vivo Electroporation (ZFN mRNA), AAV6 (donor vector)[44]

TALEN CD19+ lymphoma CD52, TRAC, TRBC CD19 CAR Ex vivo Electroporation (TALEN mRNA), lentivirus (CAR)[142]
Acute lymphoblastic leukaemia CD52, TRAC CD19 CAR Ex vivo Electroporation (TALEN mRNA), lentivirus (CAR)[52]
N/A PD-1, TRAC CD20 CAR Ex vivo Electroporation (TALEN mRNA), lentivirus (CAR)[132]
Burkitt’s lymphoma GM-CSF CD22 CAR Ex vivo Electroporation (TALEN mRNA), lentivirus (CAR)[130]
Multiple myeloma TRAC, CD52 BCMA CAR Ex vivo Electroporation (TALEN mRNA), lentivirus (CAR)[143]
Burkitt’s lymphoma TRAC, IL2Ra, PD-1 CD22 CAR, IL-12P70 Ex vivo Electroporation (TALEN mRNA), AAV6 (repair vector), lentivirus (CAR)[135]

megaTAL B cell lymphoma TRAC CD19 CAR, TREX2, FOXO1, eGFP In vitro, ex vivo Polymer nanoparticles (TRAC-megaTAL, TREX2, FOXO1, eGFP mRNA),
electroporation (eGFP mRNA), lentivirus (19-41BBz CAR)[93]

TRC1-2 nuclease B cell lymphoma TRAC CD19 CAR Ex vivo Electroporation (TCR1-2 nuclease mRNA), AAV6 (CAR donor vector)[22]
CRISPR/

Cas9
Epstein-Barr virus-associated gastric cancer PD-1 N/A Ex vivo Nucleofection (sgRNA/Cas9 plasmid)[126]

Acute lymphoblastic leukaemia TRAC CD19 CAR Ex vivo Electroporation (Cas9 mRNA, gRNA), AAV (1928z CAR repair vector)[134]
Acute lymphoblastic leukaemia TRAC, TRBC, B2M,

Fas, PD1, CTLA-4
CD19 CAR Ex vivo Electroporation (Cas9 mRNA or protein), lentivirus (gRNA, CAR)[60]

Colorectal carcinoma CTLA-4 N/A (Cytotoxic T lymphocytes) Ex vivo Lentivirus (sgRNA, Cas9)[66]
Erythroleukaemia, Burkitt’s lymphoma LAG-3 CD19 CAR Ex vivo Electroporation (Cas9 protein), nucleofection (sgRNA), lentivirus (CAR)[129]
Acute lymphoblastic leukaemia, prostate carcinoma TRAC, TRBC, PD-1,

B2M, HLA class I genes
CD19 CAR, PSCA CAR Ex vivo Electroporation (Cas9 mRNA, gRNAs), lentivirus (CAR)[144]

Acute lymphoblastic leukaemia, melanoma TRBC gd TCR In vitro, ex vivo Lentivirus (TCR, CRISPR/Cas9)[122]
Burkitt's lymphoma TRAC CD19 CAR Ex vivo Electroporation (Cas9 mRNA), lentivirus (gRNA, CAR)[67]
Glioblastoma DGK 139 (EGFR VIII) CAR Ex vivo Nucleofection (RNPs), lentivirus (139 CAR)[124]
Relapsed and refractory acute lymphoblastic leukaemia, non-

Hodgkin's lymphoma
TRAC, CD7 CD7 CAR, CD19 CAR In vitro, ex vivo Electroporation (Cas9 mRNA, sgRNA), lentivirus (CAR)[138]

Breast cancer (TNBC) PD-1 Meso CAR Ex vivo Electroporation (RNPs), lentivirus (CAR)[127]
Bladder cancer CTLA-4 N/A (Peripheral blood CD8+

T cells)
Ex vivo Electroporation (RNPs)[128]

Hepatocellular carcinoma PD-1 N/A Ex vivo Electroporation (liposomes encapsulating plasmid)[97]
Glioblastoma TRAC, B2M, PD-1 EGFR vIII CAR Ex vivo Electroporation (RNPs), AAV6 (CAR)[23]
N/A TRAC, RAB11A, CD4,

TUBA1B, ACTB, FBL, CLTA
N/A Ex vivo Electroporation (polymer nanoparticle-stabilized RNPs)[99]

Pancreatic carcinoma TGFBR2 Meso CAR Ex vivo Nucleofection (RNPs), lentivirus (CAR)[131]
Non-Hodgkin’s lymphoma, other immune disorders PTEN, PCSK9 N/A In vivo Lipid nanoparticles (Cas9 mRNA, sgRNA, RNPs)[98]
N/A TRAC IL-15, mClover3, CAR, BiTE Ex vivo Nucleofection (RNPs, DNA for HDR)[133]
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Table 2
Clinical trials using gene editing in T cells for cancer immunotherapy.

Platform Cancer Target (Knockout) Induced T cell Expression Delivery Method (Cargo) Phase Trial number
SB11 B cell lymphoma N/A CD19 CAR Nucleofection (SB plasmid, CAR) I NCT00968760

Acute lymphoblastic leukaemia, acute biphe-
notypic leukaemia, non-Hodgkin’s lym-
phoma, small lymphocytic lymphoma,
chronic lymphocytic leukaemia

N/A CD19 CAR Nucleofection (SB plasmid, CAR) I NCT01497184

B-lineage lymphoid malignancies N/A CD19 CAR Nucleofection (SB plasmid, CAR) I NCT01362452
Chronic lymphocytic leukaemia N/A CD19 CAR Nucleofection (SB plasmid, CAR) I NCT01653717

TALEN Acute lymphoblastic leukaemia CD52, TRAC, TRBC CD19 CAR Electroporation (mRNA), lentivirus (CAR) I NCT02746952
Relapsed and refractory acute lymphoblastic
leukaemia

CD52, TRAC, TRBC CD19 CAR Electroporation (mRNA), lentivirus (CAR) I NCT02808442

Relapsed and refractory multiple myeloma CD52, PD-1 CS1 CAR Electroporation (mRNA), lentivirus (CAR) I NCT04142619
Acute lymphoblastic leukaemia CD52, PD-1 CD22 CAR Electroporation (mRNA), lentivirus (CAR) I NCT04150497

CRISPR/Cas9 Metastatic non-small cell lung cancer PD-1 N/A Nucleofection (plasmid) I NCT02793856
Epstein-Barr virus-associated cancers PD-1 N/A Nucleofection (plasmid) I/II NCT03044743
Advanced oesophageal cancer PD-1 N/A Electroporation (plasmid) N/A NCT03081715
Relapsed and refractory CD19+ leukaemia
and lymphoma

TRAC, TRBC, B2M CD19 CAR Electroporation (mRNA), lentivirus (CAR) I/II NCT03166878

Relapsed and refractory acute myeloid
leukaemia

TRAC CD123 CAR Electroporation (mRNA), lentivirus (CAR) I NCT03190278

Advanced refractory myeloma, metastatic
sarcoma

TRAC, TRBC, PD-1 N/A Electroporation (RNPs), lentivirus (TCR) I NCT03399448

Mesothelin-positive multiple solid tumours PD-1, TRAC Mesothelin-directed CAR Lentivirus (DNA, CAR) I NCT03545815
Mesothelin-positive multiple solid tumours PD-1, TRAC Mesothelin-directed CAR Lentivirus (DNA, CAR) I NCT03747965
Refractory B cell malignancies Unknown CD19 CAR Electroporation (mRNA) I/II NCT04035434
Refractory B cell malignancies HPK1 CD19 CAR Electroporation (mRNA), lentivirus (CAR) I NCT04037566
Metastatic gastrointestinal epithelial cancer CISH N/A (TIL) Electroporation (mRNA) I/II NCT03538613
T cell leukaemia and lymphoma CD28 CD7 CAR Undefined I NCT03690011
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with improved responses to antigens, enhanced antitumour activity,
and optimized functionality for universal CAR T cell therapies.

4.1. Engineering T cells to target specific antigens

In a normal immune response, individual T cells express distinct
TCRs that can recognize an antigen in the context of the major histo-
compatibility complex (MHC) to activate and proliferate [105].
Genetic engineering can be used to enhance the cancer-targeting
ability of primary T cells via the incorporation of exogenous receptors
[15]. Specifically, T cells have been engineered to express CARs or
TCRs with specificity for a tumour-associated antigen to enhance
their therapeutic response. CARs are synthetic transmembrane recep-
tors that combine an extracellular antigen recognition domain with
the intracellular co-stimulatory domains from CD28 or 4-1BB,
whereas engineered TCRs are affinity-enhanced synthetic receptors
with the same structure as the native TCR [24]. The 1st generation
CAR initially combined the extracellular antigen recognition domain
as a single-chain variable fragment to the intracellular signalling
domain from CD3z [6]. This CAR was later improved by adding the
co-stimulatory endodomain from either CD28 or 4-1BB to CD3z to
the intracellular side [6]. This 2nd generation CAR has formed the
basis for current clinically approved CAR T cell therapies. The 3rd
generation CAR further improved antitumour activity with the addi-
tion of both CD28 and 4-1BB co-stimulatory domains to CD3z [6].
Both CARs and TCRs have been widely explored in T cell engineering
applications [24,106].

In contrast to transgenic TCRs, CARs can respond to surface anti-
gens independent of MHC, expanding the target space for T cell ther-
apy [15,107]. Many investigations have focused on generating CD19-
specific CAR T cells to treat relapsed or refractory B cell lymphoid
malignancies [108]. Clinically approved CAR T cell therapies have
relied on retroviral or lentiviral transduction of the CAR transgene
[1�4,109]. Recently, other delivery technologies have also generated
CAR T cells targeting a variety of antigens. Maiti et al. delivered SB
plasmid DNA via electroporation to genetically modify T cells to
express CD19-specific CARs [30]. This provided the groundwork for
future phase I clinical trials, in which SB was used to modify patient-
and donor-derived T cells to express 2nd generation CD19-specific
CARs [27,28]. Patients with advanced non-Hodgkin lymphoma (NHL)
and ALL underwent haematopoietic stem cell transplantation (HSCT)
and infusion of either autologous or allogeneic CAR T cells for adju-
vant therapy [28]. The infusion of CAR T cells showed no acute or
latent toxicities and did not exacerbate graft-versus-host disease
(GVHD) [28]. NP delivery platforms have also been used to produce
antigen-specific CAR expression in T cells. Smith et al. delivered SB
plasmid DNA via polymeric NPs to generate CD19-specific CAR T cells
that effectively targeted tumour cells to induce long-term disease
remission [95].

Although CD19-specific CAR T cell therapies have been successful
in treating B cell malignancies, they can lead to loss of normal CD19+

B cells, humoral immunity, and potentially the development of
CD19� B cell cancers [110]. As a result, other studies have explored
CARs for antigens expressed solely on tumour cells to avoid off-target
toxicity [110,111]. Unlike CD19, the receptor tyrosine kinase-like
orphan receptor 1 (ROR1) is expressed on B cell malignancies and
solid tumours, but not normal cells [110]. Thus, Deniger et al. deliv-
ered two SB transposons via nucleofection to produce 2nd generation
ROR1-specific CAR T cells [110]. Similarly, Krishnamurthy et al. engi-
neered CAR T cells with the SB platform to target human endogenous
retrovirus K (HERV-K), which is upregulated on melanoma cancers
[111]. Adusumilli et al. engineered CAR T cells to target mesothelin
(MSLN), which is highly expressed in malignant pleural mesotheli-
oma and metastatic lung and breast cancers [112]. Other investiga-
tions have extended this approach by using the SB platform to
generate interleukin-3 receptor a-chain (CD123)-specific CAR T cells
and CD33-specific CAR cytokine-induced killer (CIK) cells to treat
other haematological malignancies, such as acute myelogenous leu-
kaemia (AML) [113�115]. While the initial success of CAR T cell ther-
apy has expanded its use into clinical trials, it can lead to the
development of cytokine release syndrome (CRS) [116]. This systemic
inflammatory syndrome is caused by activated T cell proliferation
with rapid release of inflammatory cytokines, which can be toxic to
the patient [116].

Engineered TCRs have also been applied to target tumour-associ-
ated antigens and have various advantages over CARs including
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decreased CRS and the ability to recognize a larger array of potential
antigens [117,118]. Peng et al. delivered the SB platform via electro-
poration to introduce TCRs targeting p53 and MART-1 in peripheral
blood lymphocytes [119]. The modified lymphocytes had comparable
transgene expression and phenotypic function to those transduced
with retroviruses [119]. Field et al. also compared lentiviral delivery
and SB nucleofection by generating murine-human chimeric TCR-
engineered T cells to target Wilms' tumour 1 (WT1) [31]. The SB plat-
form had a slightly lower transfection efficiency than lentiviral inte-
gration, but SB-modified cells could be readily expanded and had
more randomly distributed integration sites, reducing the chance of
oncogenesis by disruption of an actively transcribed gene [31].
Deniger et al. delivered the SB platform via electroporation to engi-
neer mutation-specific TCRs unique to each patient’s tumour, creat-
ing a personalized T cell therapy to produce improved patient
outcomes [120]. Despite their advantages, engineered TCRs have yet
to reach the same level of clinical application as CARs due to their
lower antitumour activity and higher risk of off-target reactivity
[105].

4.2. Enhancing antitumour activity of T cells

Recent investigations have used similar strategies to generate
antigen-specific T cells while also utilizing gene editing to increase
their antitumour activity. A variety of gene editing platforms have
been used to replace the endogenous TCRs with a transgenic TCR to
eliminate competition in signalling and promote T cell activation
driven by the introduced receptor [65,121,122]. For example, Clauss
et al. used SB transposon minicircle vectors encoding RNA and miRNA
to express the engineered TCR and disrupt the endogenous TCR a
(TRAC) and b (TRBC) chains, respectively [121]. The use of miRNA
reduced mispairing with the endogenous TCRs, increased surface
expression of the transgenic TCR, and enhanced antigen-specific T
cell functionality [121]. Similarly, Provasi et al. used ZFN to disrupt
the endogenous TCRs and stably express WT1-specific TCRs in T cells
[65]. The engineered T cells showed improved recognition to antigen
and sustained antitumour activity in vivowithout off-target reactivity
[65]. Legut et al. used CRISPR/Cas9 to simultaneously disrupt TRBC
and transduce a cancer-specific TCR, which resulted in increased sur-
face expression of the transgenic TCR and improved responses to
antigen [122]. Moffett et al. described a “hit-and-run programming”
of T cells and haematopoietic stem cells in which NPs are delivered to
transiently express a megaTAL nuclease mRNA targeting TRAC [93].
The NPs did not affect virus-mediated gene transfer, so the same cells
were then transduced with a lentiviral vector delivering a tumour-
specific CAR [93]. NPs have also been used to inhibit TGFb signalling
and subsequently increase T cell antitumour activity. Schmid et al.
used polymer NPs targeting CD8+ T cells to deliver and release the
TGFb inhibitor SD-208 to mouse T cells in vivo, extending the survival
of tumour-bearing mice [123]. This strategy also enabled delivery of
TLR7/8 agonist to target PD-1, increasing the antitumour activity of
CD8+ T cells [123]. Similarly, Yang et al. delivered the TGFb inhibitor
SB525334 via gold NPs to T cells in vivo to enhance their cytokine pol-
yfunctionality in a cancer vaccine model [101].

In addition to disrupting the endogenous TCRs, gene editing has
been used to disrupt genes that contribute to T cell exhaustion and
enhance antitumour activity. Various inhibitory signals can affect T
cell signalling pathways and reduce the efficacy of T cell immuno-
therapies. Thus, investigations have focused on disrupting the
immune checkpoint receptors, programmed death-1 (PD-1) and
cytotoxic T-lymphocyte antigen-4 (CTLA-4) [124]. Beane et al. used
ZFN delivered via electroporation of mRNA to disrupt PD-1 in mela-
noma tumour infiltrating lymphocytes (TILs) [125]. The edited TILs
showed improved in vitro effector function and a significantly
increased polyfunctional cytokine profile [125]. In addition, studies
have used CRISPR/Cas9 to disrupt PD-1 in T cells for increased
antitumour activity in a variety of cancers, including gastric, breast,
and liver cancer [97,126,127]. Lu et al. used CRISPR/Cas9 delivered
via liposomes to disrupt PD-1, which generated T cells with high anti-
tumour activity that could secrete the pro-inflammatory cytokine
IFN-g and kill HepG2 cells in vitro [97]. Similarly, CRISPR/Cas9 has
been used to disrupt CTLA-4 in cytotoxic T lymphocytes (CTLs). Shi
et al. delivered CRISPR/Cas9 via lentiviral vector to disrupt CTLA-4 in
CTLs, enhancing their antitumour activity in a mouse xenograft
model of colorectal carcinoma [66]. Zhang et al. delivered RNPs via
electroporation to disrupt CTLA-4, generating CTLs with an enhanced
immune response and increased cytotoxicity against bladder cancer
cells in vitro [128]. Beyond PD-1 and CTLA-4, investigations have dis-
rupted lymphocyte activation gene-3 (LAG-3) or diacylglycerol kinase
1 (DGK) to increase T cell activity, and granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) to prevent CRS [124,129,130].
CRISPR/Cas9-mediated knockout of endogenous TGF-b receptor II
(TGFBR2) has also been recently demonstrated to increase T cell
activity in solid tumours by reducing the Treg conversion that results
in CAR T cell exhaustion [131].

Given the benefits of disrupting both the endogenous TCRs and
immune checkpoint receptors, recent studies have combined these
strategies. Gautron et al. used TALEN to disrupt both TRAC and PD-1,
improving CAR T cell functionality [132]. In a recent phase I first-in-
human clinical trial, CRISPR/Cas9 was used to remove the endoge-
nous TCRs in T cells from three patients with refractory cancer, which
reduced TCR mispairing and enhanced expression of the cancer-spe-
cific TCR transgene NY-ESO-1 [54]. In addition, disrupting PD-1
increased T cell antitumour activity [54]. The CRISPR-based system
was able to achieve highly specific editing at the targeted loci without
clinical toxicity, and the edited T cells effectively targeted tumour
cells [54]. Introducing an engineered TCR while disrupting an
immune checkpoint inhibitor resulted in persistent antitumour T cell
activity.

Recent advances in non-viral gene editing strategies have also
enabled efficient site-specific integration of CAR or other transgenes
to further improve T cell functionality. By targeting the locus of the
endogenous TCR, transgene introduction can simultaneously disrupt
gene expression [133]. Eyquem et al. used CRISPR/Cas9 delivered via
electroporation to direct a CD19-specific CAR into the TRAC locus.
The CAR T cells had enhanced potency and delayed effector differen-
tiation and exhaustion [134]. Similarly, Sachdeva et al. used TALEN
delivered via electroporation to insert a CAR into TRAC, and interleu-
kin-12 (IL-12P70) into either interleukin-2 receptor subunit alpha
(IL2Ra) or PD-1 locus [135]. The edited CAR T cells secreted IL-12P70
in a tumour cell-dependent manner and had improved antitumour
activity in vitro and in vivo [135]. Similarly, other investigations have
introduced pro-inflammatory cytokines into T cells to promote a
memory response and increase their antitumour activity. Hurton
et al. used a SB plasmid-based system delivered via electroporation
to co-express CAR with a membrane-bound chimeric interleukin-15
(mbIL15) [136]. This resulted in CAR T cells that were phenotypically
similar to T memory stem cells, a rare T cell subset with potential for
long-term persistence [136].

4.3. Generating universal CAR T cells

Although autologous CAR T therapies have had successful clinical
outcomes, their widespread application has been limited by the com-
plexity and cost of manufacturing patient-derived CAR T cells [137].
These therapies heavily rely on the ability to harvest sufficient autol-
ogous T cells from cancer patients [138]. Although donor-derived
CAR T cells could overcome many of the immune defects associated
with cancer treatment and simplify the manufacturing process, cur-
rent CAR T cell therapies use autologous T cells to prevent GVHD [6].
Incompatibility between the major and/or minor histocompatibility
antigens from the host and donor causes allogeneic T cells to be
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rejected [139]. In order to create safe allogeneic CAR T cell therapies,
this incompatibility must be avoided or adverse immunological inter-
actions must be suppressed [139].

Recent investigations have applied gene editing to modify alloge-
neic T cells from healthy donors and generate CAR T cells that are uni-
versally accepted by other patients [26]. Specifically, disrupting the
endogenous TCRs of allogeneic T cells prevented them from recogniz-
ing host antigens, which leads to GVHD [53]. In the first study to gen-
erate universal CAR T cells, Torikai et al. used ZFN to disrupt TRAC
and TRBC in CD19-specific donor CAR T cells, which prevented GVHD
without compromising CAR-dependent effector functions [140]. Allo-
geneic CAR T cells can also be targeted by host T cells in a host-ver-
sus-graft (HVG) effect. To prevent the host cells from killing newly
introduced CAR T cells, human leukocyte antigen (HLA) expression
on allogeneic T cells can be disrupted [6]. In addition to targeting
TRAC and TRBC, Torikai et al. delivered ZFN via electroporation to dis-
rupt HLA-A in CD19-specific CAR T cells and embryonic stem cells,
which prevented an adverse immune response [141].

The HVG effect in allogeneic CAR T cell therapy can also be miti-
gated by using a lymphodepleting agent to suppress the host
immune system [139]. However, these agents can be toxic to the
introduced CAR T cells, so investigations have worked to generate
universal CAR T cells with lymphodepletion resistance. Poirot et al.
used TALEN to generate universal CAR T cells by disrupting the
endogenous TCRs and CD52, a protein targeted by the chemothera-
peutic agent alemtuzumab [142]. The CAR T cells did not elicit GVHD
and targeted CD19+ tumours, even in the presence of alemtuzumab
[142]. Similarly, Qasim et al. used TALEN to disrupt the TRAC and
CD52 loci in donor cells and generate universal CD19-specific CAR T
cells [52]. Two infants with relapsed and refractory ALL, undergoing
lymphodepleting chemotherapy and anti-CD52 serotherapy, were
infused with these CAR T cells and achieved molecular remission
within 28 days [52]. This strategy has also been used to develop uni-
versal CAR T cells that target different antigens. Sommer et al.
used TALEN delivered via electroporation to generate universal B cell
maturation antigen (BCMA)-specific CAR T cells with lymphodeple-
tion resistance and reduced risk of GVHD [143]. The allogeneic
BCMA-specific CAR T cells induced sustained antitumour responses
and maintained their phenotype and potency after scale-up
manufacturing [143].

Compared to designer nucleases, CRISPR/Cas9 multiplex gene
editing offers a more efficient strategy for generating CAR T cell ther-
apies [53,60]. Ren et al. used a one-shot CRISPR protocol that incorpo-
rated multiple gRNAs into a lentiviral vector to disrupt the
endogenous TCR and HLA class I genes [60]. The universal CAR T cells
were also designed to exhibit resistance to inhibitory pathways such
as PD-1 and CTLA-4 [60]. To further develop this therapy, the same
group used this protocol to simultaneously generate universal CAR T
cells and disrupt immune checkpoint receptors that inhibit T cell
activity [144]. Specifically, they used CRISPR/Cas9 delivered via elec-
troporation to disrupt the endogenous TCR and PD-1, enhancing anti-
tumour activity [144]. They also disrupted b-2 microglobulin (B2M)
to suppress the HVG effect in allogeneic T cells [144]. CRISPR/Cas9
has also been used to prevent unintended CAR T cell fratricide caused
by shared antigen expression between CAR T cells and malignant T
cells [138]. Cooper et al. used CRISPR/Cas9 to develop fratricide-resis-
tant universal CD7-specific CAR T cells that targeted T cell ALL in vitro
and in vivowithout inducing GVHD [138].

5. Conclusions and future directions

Gene editing technology has transformed adoptive T cell therapies
by increasing their potential to address currently unmet clinical
needs. Designer nuclease and CRISPR/Cas9 gene editing platforms
can facilitate precise genetic modification to generate engineered T
cells with improved responses to antigens, enhanced antitumour
activity, and potential for use in allogeneic applications. T cell immu-
notherapies have shown success treating B cell malignancies, but
there are still challenges in applying these therapies to other types of
cancer. Recent CRISPR/Cas9-based genome-wide screens have dis-
covered novel drug targets to further advance genetically engineered
T cell therapies [145�147]. Identifying new gene targets to increase
the efficacy of T cells in immunosuppressive tumour microenviron-
ments could extend the use of these therapies to solid tumours. In
addition, future investigations must confirm the efficacy and safety of
gene editing technologies for in vivo applications. Novel delivery sys-
tems, such as cell squeezing and nanoparticles, should be further
explored for delivering gene editing technologies to T cells to poten-
tially improve efficiency and reduce cytotoxicity. Ongoing advances
in gene editing strategies, identification of new drug targets, and
implementation of novel delivery platforms could broaden the appli-
cation of T cell immunotherapies to successfully treat other haemato-
logical malignancies and even solid tumour cancers.
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